Comparison of fast multi-slice and standard segmented techniques for detection of late gadolinium enhancement in ischemic and non-ischemic cardiomyopathy – a prospective clinical cardiovascular magnetic resonance trial
نویسندگان
چکیده
BACKGROUND Segmented phase-sensitive inversion recovery (PSIR) cardiovascular magnetic resonance (CMR) sequences are reference standard for non-invasive evaluation of myocardial fibrosis using late gadolinium enhancement (LGE). Several multi-slice LGE sequences have been introduced for faster acquisition in patients with arrhythmia and insufficient breathhold capability. The aim of this study was to assess the accuracy of several multi-slice LGE sequences to detect and quantify myocardial fibrosis in patients with ischemic and non-ischemic myocardial disease. METHODS Patients with known or suspected LGE due to chronic infarction, inflammatory myocardial disease and hypertrophic cardiomyopathy (HCM) were prospectively recruited. LGE images were acquired 10-20 min after administration of 0.2 mmol/kg gadolinium-based contrast agent. Three different LGE sequences were acquired: a segmented, single-slice/single-breath-hold fast low angle shot PSIR sequence (FLASH-PSIR), a multi-slice balanced steady-state free precession inversion recovery sequence (bSSFP-IR) and a multi-slice bSSFP-PSIR sequence during breathhold and free breathing. Image quality was evaluated with a 4-point scoring system. Contrast-to-noise ratios (CNR) and acquisition time were evaluated. LGE was quantitatively assessed using a semi-automated threshold method. Differences in size of fibrosis were analyzed using Bland-Altman analysis. RESULTS Three hundred twelve patients were enrolled (n = 212 chronic infarction, n = 47 inflammatory myocardial disease, n = 53 HCM) Of which 201 patients (67,4%) had detectable LGE (n = 143 with chronic infarction, n = 27 with inflammatory heart disease and n = 31 with HCM). Image quality and CNR were best on multi-slice bSSFP-PSIR. Acquisition times were significantly shorter for all multi-slice sequences (bSSFP-IR: 23.4 ± 7.2 s; bSSFP-PSIR: 21.9 ± 6.4 s) as compared to FLASH-PSIR (361.5 ± 95.33 s). There was no significant difference of mean LGE size for all sequences in all study groups (FLASH-PSIR: 8.96 ± 10.64 g; bSSFP-IR: 8.69 ± 10.75 g; bSSFP-PSIR: 9.05 ± 10.84 g; bSSFP-PSIR free breathing: 8.85 ± 10.71 g, p > 0.05). LGE size was not affected by arrhythmia or absence of breathhold on multi-slice LGE sequences. CONCLUSIONS Fast multi-slice and standard segmented LGE sequences are equivalent techniques for the assessment of myocardial fibrosis, independent of an ischemic or non-ischemic etiology. Even in patients with arrhythmia and insufficient breathhold capability, multi-slice sequences yield excellent image quality at significantly reduced scan time and may be used as standard LGE approach. TRIAL REGISTRATION ISRCTN48802295 (retrospectively registered).
منابع مشابه
Recovery of methamphetamine associated cardiomyopathy predicted by late gadolinium enhanced cardiovascular magnetic resonance
Methamphetamine is known to cause a cardiomyopathy which may be reversible with appropriate medical therapy and cessation of use. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a case of severe methamphetamine-associated cardiomyopathy in which cardiac function recovered after 6 mo...
متن کاملFree-breathing 3D phase-sensitive inversion recovery late gadolinium enhancement at 3.0 Tesla: reliability and image quality in ischemic and non-ischemic cardiomyopathy in comparison with multiple breath-hold 3D imaging
Background In both ischemic (ICM) and non-ischemic (NICM) cardiomyopathy late gadolinium enhancement (LGE) is an important cardiovascular magnetic resonance (CMR) technique. LGE CMR, traditionally performed in 2D during multiple breath-holds (MB), is challenging for vulnerable patients and subject to slice misregistration. Therefore, LGE CMR during free-breathing (FB) is more robust and enables...
متن کاملMyocardial fibrosis in desmin-related hypertrophic cardiomyopathy
Desmin-related myopathy (DRM) is known to cause different types of cardiomyopathy. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a rare case of desmin-related hypertrophic cardiomyopathy, CMR revealed fibrosis in the lateral wall of the left ventricle. CMR is superior to conventio...
متن کاملMyocardial fibrosis delineation in late gadolinium enhancement images of Hypertrophic Cardiomyopathy patients using deep learning methods
Introduction: Accurate delineation of myocardial fibrosis in Late Gadolinium Enhancement on Cardiac Magnetic Resonance (LGE-CMR) has a crucial role in the assessment and risk stratification of HCM patients. As this is time-consuming and requires expertise, automation can be essential in accelerating this process. This study aims to use Unet-based deep learning methods to automate the mentioned ...
متن کاملEquivalence of conventional and fast late gadolinium enhancement (LGE) techniques for quantitative evaluation of fibrosis in ischemic and non-ischemic cardiac disease - Save the Time!
Methods Patients with myocardial infarction (n = 45), myocarditis (n = 25) or hypertrophic cardiomyopathy (HCM) (n = 15) were prospectively enrolled. After administration of gadolinium contrast agent, LGE images were acquired ECG-gated in short axis slices (slice thickness 7 mm, no gap) using 4 different LGE sequences: (1) conventional segmented 2D phase-sensitive inversion recovery in single-s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 20 شماره
صفحات -
تاریخ انتشار 2018